Reinforcement Learning

Eine Einführung

Neele Kemper neele.kemper@uni-a.de

Was ist Reinforcement Learning?

- Reinforcement Learning (RL) ist die Wissenschaft der Entscheidungsfindung
- RL ist eine Schnittstelle verschiedener Wissenschaften
 - Informatik, Neurowissenschaften, Psychologie, Mathematik usw.
- Perspektive der Informatik
 - Teilgebiet von Machine Learning
 - Fokus auf Lernen durch Interaktion und Belohnung

Machine-Learning-Paradigmen

Machine Learning

Supervised

Unsupervised

Reinforcement Learning

Lernen aus gelableten Daten

Finden von Mustern in unlabeled Daten

Lernen durch Interaktion mit einer Umgebung und Feedback

Klassifikation, Regression

Clusteranalyse, Dimensionsreduktionen Strategieentwicklung, Entscheidungsfindung

Charakteristika von Reinforcement Learning

- Kein direkter Supervisor, sondern ein Belohnungssignal (Reward)
- Verzögertes Feedback statt sofortiger Rückmeldung
- Zeit spielt eine Rolle: Die Aktionen wirken sequentiell und beeinflussen zukünftige Zustände
- Agent beeinflusst die Daten: Durch sein Handeln verändert er die Umgebung und somit auch die eigenen Beobachtungen

Beispiele für RL-Anwendungen

Steuerung von Drohnen

Autonome Navigation, Routenplanung

Robotik

• Präzise Bewegungsabläufe, flexible Anpassung an wechselnde Umgebungen

Spiele-KI

Strategische Entscheidungsfindung (z. B. Atari, Go, Schach)

Large Language Models

Kontextsensitives Text- und Dialogverhalten durch RL-Feintuning

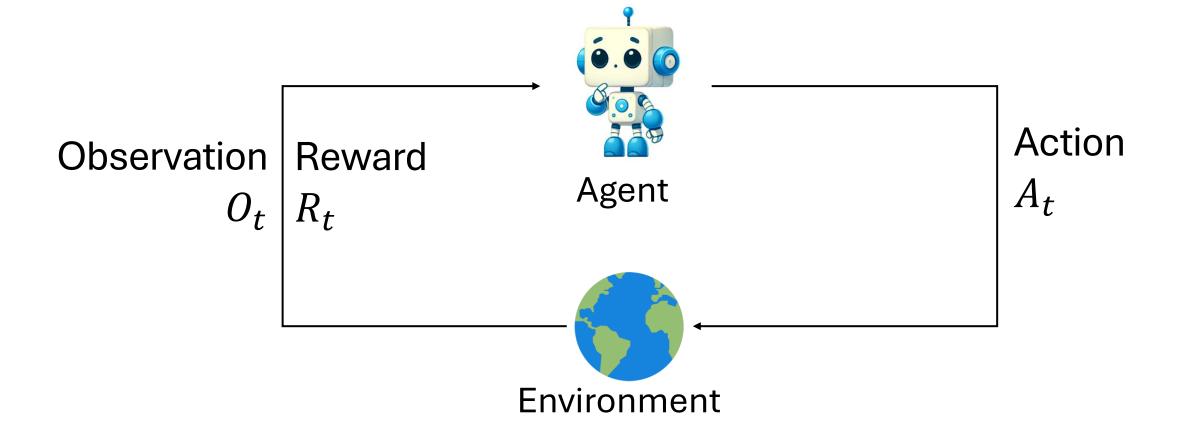
Anlageportfolios

• Dynamische Ressourcenallokation, Risikomanagement

Sequentielle Entscheidungsfindung

- **Ziel:** Aktionen wählen, um langfristigen Gesamtertrag zu maximieren
- Langfristige Konsequenzen: Aktionen haben Auswirkungen auf zukünftige Belohnungen
- Verzögerte Belohnung: Manchmal lohnt sich Verzicht auf Sofort-Belohnung zugunsten eines größeren, späteren Nutzens

Agent-Umgebungs-Interaktion



$$H_t = A_1, O_1, R_1, \dots, A_t, O_t, R_t$$

Markov-Zustände (Informationszustand)

• Formell:

$$\mathbb{P}[S_{t+1}|S_t] = \mathbb{P}[S_{t+1}|S_1, ..., S_t]$$

Markov-Eigenschaft:

• "Die Zukunft ist, gegeben die Gegenwart, unabhängig von der Vergangenheit."

Praktische Folge:

 ${f \cdot}$ Ist der Zustand (State) ${\cal S}_t$ bekannt, kann die Historie vernachlässigt werden

Komponenten eines RL-Agenten

• Policy (π)

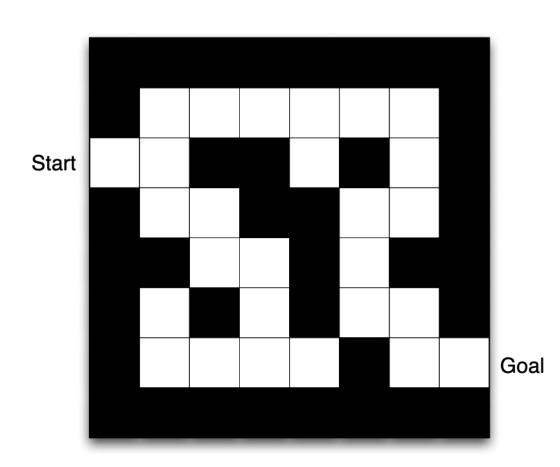
- Verhaltensfunktion (Abbildung von Zuständen auf Aktionen)
- Deterministisch: $\pi(s) = a$
- Stochastisch: $\pi(s) = \mathbb{P}[A = a | S = s]$

Value-Funktion

- Schätzt, wie "gut" ein Zustand oder eine Aktion ist
- Vorhersage des zukünftigen Rewards

$$v_{\pi}(s) = \mathbb{E}_{\pi}[R_t + \gamma R_{t+1} + \gamma^2 R_{t+2}, \dots | S_t = s])$$

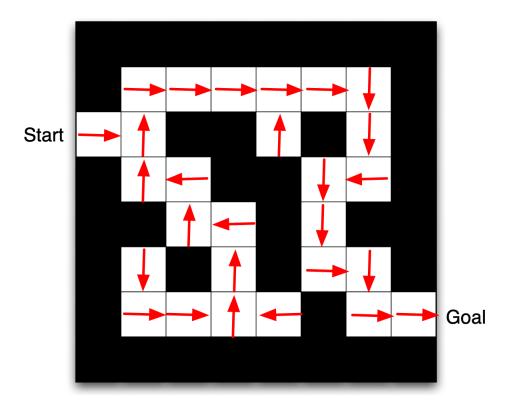
Beispiel: Policy und Value Funktion



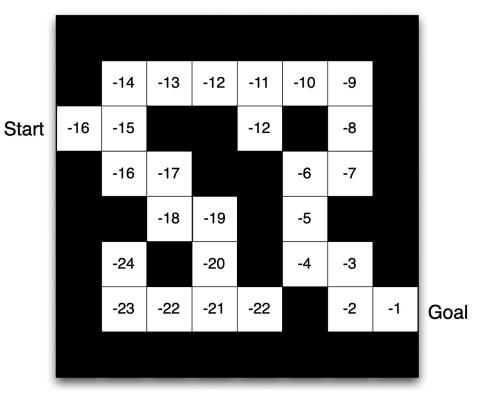
- Reward: -1 pro Zeitschritt
- Aktionen: {N, E, S, W}
- **Zustand**: Position des Agenten im Labyrinth

Beispiel: Policy und Value Funktion

Policy



Value Function

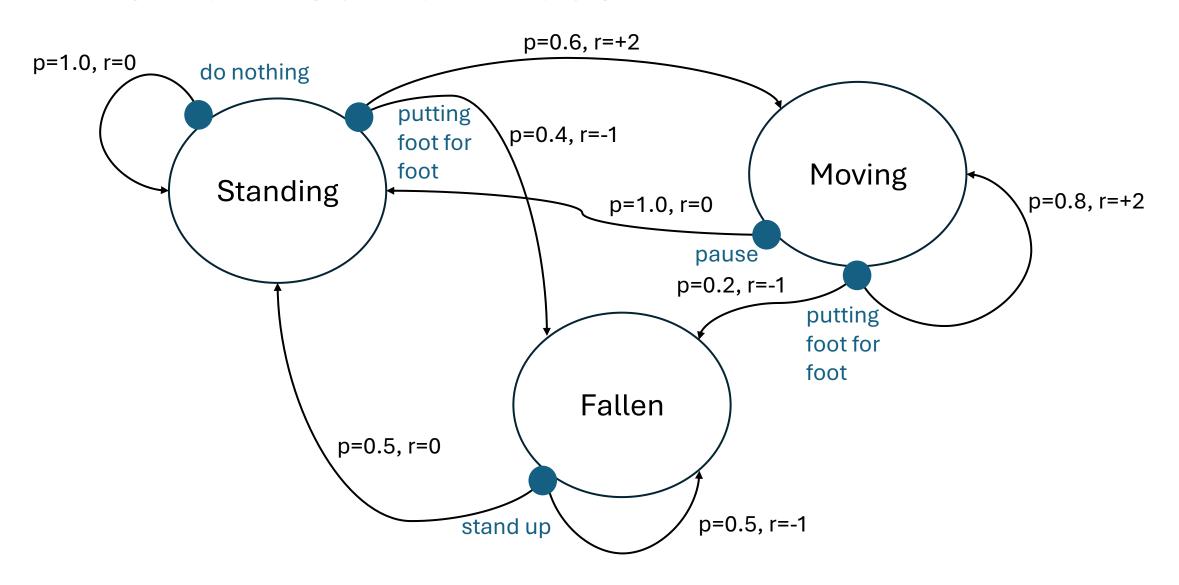


Exploration vs. Exploitation

- RL basiert auf Trial-and-Error
- Exploration: Neue Zustände und Aktionen erproben, um Wissen über die Umgebung zu sammeln
- Exploitation: Das bereits Erlernte nutzen, um Belohnung zu maximieren
- In der Praxis ist ein Balanceakt zwischen beiden Strategien erforderlich
- ϵ -Greedy: Mit einer kleinen Wahrscheinlichkeit ϵ wählt der Agent eine zufällige Aktion (Exploration), während er sonst (mit Wahrscheinlichkeit (1- ϵ) die aktuell beste bekannte Aktion (Exploitation) ausführt.

Markov Decision Process

Markov Decision Process



Wichtige MDP-Eigenschaften

- Markov-Eigenschaft: Alle nötigen Infos im aktuellen Zustand
- Übergangswahrscheinlichkeit und Reward-Funktion:

$$p(s_{t+1}, r|s, a) = \mathbb{P}[S_t = s_{t+1}, R_t = r|S_{t-1} = s, A_{t-1} = a]$$

Ertrag (Return)

• Definition des Ertrag G_t :

$$G_t = R_{t+1} + R_{t+2} + R_{t+3} + \dots + R_T$$

Diskontierung:

$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots = \sum_{k=0}^{I} \gamma^k R_{t+k+1}$$

Bellman's Konsistenz:

$$G_{t} = R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} + \gamma^{3} R_{t+4} \dots$$

$$= R_{t+1} + \gamma (R_{t+2} + \gamma R_{t+3} + \gamma^{2} R_{t+4})$$

$$= R_{t+1} + \gamma G_{t+1}$$

Bellman-Gleichung für State-Value-Funktion

$$v_{\pi}(s) = \mathbb{E}_{\pi}[G_t|S_t = s]$$

$$/ = \mathbb{E}_{\pi}[R_{t+1} + \gamma G_{t+1}|S_t]$$

$$= \sum_{a} \pi(a|s) \sum_{s'} \sum_{r} p(s',r|s,a) [r + \gamma \mathbb{E}_{\pi}[G_t|S_{t+1} = s']]$$

$$= \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) [r + \gamma v_{\pi}(s')]$$

Summe über alle Aktionen

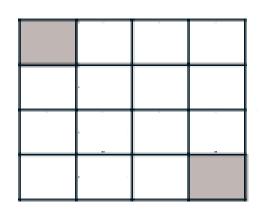
Summe über alle nächsten Zustände s' und allen Belohnungen r

Wahrscheinlichkeit, dass eine Aktion a aus dem Zustand s nach der Policy π ausgeführt wird.

Wahrscheinlichkeit, im Zustand s' zu landen und den Belohnung r zu erhalten, wenn man im Zustand s beginnt und die Aktion a wählt.

Multipliziert mit der Summe von Belohnung r plus des erwarteten Werts (Value) des nächsten Zustands multipliziert mit Diskontierungsfaktor γ

Beispiel: Berechnung der Zustandswerte (State-Value)



- Szenario: Gridworld mit zufälliger Policy
- Aktionen: {N, E, S, W}
- **Zustand**: terminal (grau); nicht terminale (weiß)
- **Belohnung:** -1 pro Zeitschritt
- Übergangswahrscheinlichkeiten: Gleichverteilt (0.25)
- Diskontfaktor : $\gamma = 1$
- $v_{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) [r + \gamma v_{\pi}(s')]$
- $v(s) = \sum_{s',r} p(s',r|s,a)[r + \gamma v(s')]$

Beispiel: Berechnung der Zustandswerte

 v_k for the Random Policy

<i>k</i> = 0	0.0	0.0	0.0	0.0	
	0.0	0.0	0.0	0.0	
	0.0	0.0	0.0	0.0	
	0.0	0.0	0.0	0.0	

$$k = 1$$

$$0.0 | -1.0 |$$

$$k = 2$$

$$\begin{array}{c}
0.0 & | -1.7 & | -2.0 & | -2.0 \\
-1.7 & | -2.0 & | -2.0 & | -2.0 \\
-2.0 & | -2.0 & | -2.0 & | -1.7 \\
-2.0 & | -2.0 & | -1.7 & | 0.0
\end{array}$$

$$k = 10$$

$$0.0 -6.1 -8.4 -9$$

$$-6.1 -7.7 -8.4 -8$$

$$-8.4 -8.4 -7.7 -6$$

$$0.0 -6.1 -8.4 -9.4 -8.4$$

k = 3

$$k = \infty$$

$$\begin{array}{c} 0.0 & -14. & -20. & -22. \\ -14. & -18. & -20. & -20. \\ -20. & -20. & -18. & -14. \\ -22. & -20. & -14. & 0.0 \end{array}$$

$$v(s) = \sum_{s',r} p(s',r|s,a)[r + \gamma v(s')]$$

```
k=0
• v(s_1) = 0.25 * (-1 + 0.0) + 0.25 * (-1 + 0.0) + 0.25 * (-1 + 0.0) + 0.25 * (-1 + 0.0) = -1
```

$$k=1$$
• $v(s_6) = 0.25 * (-1 + (-1.0)) + 0.25 * (-1 + (-1.0)) + 0.25 * (-1 + (-1.0)) + 0.25 * (-1 + (-1.0)) = -2$

$$k=2$$
• $v(s_{10}) = 0.25 * (-1 + (-2.0)) + 0.25 * (-1 + (-2.0)) + 0.25 * (-1 + (-1.7)) + 0.25 * (-1 + (-1.7)) = -2.9$

State-Value und Action-Value Funktion

State-Value Funktion für Policy π

- $v_{\pi}(s) = \mathbb{E}_{\pi}[G_t | S_t = s]$
- Für jeden Zustand s
- Ergibt sich der erwartete Return
- Wenn der Agent in Zustand s beginnt
- Und dann die Policy π verwendet um seine Aktionen in jedem Zeitschritt zu wählen

Action-Value Funktion für Policy π

- $q_{\pi}(s, a) = \mathbb{E}_{\pi}[G_t|S_t = s, A_t = a]$
- Für jeden Zustand s und Aktion a
- Ergibt sich der erwartete Return
- Wenn der Agent in Zustand s beginnt und Aktion a wählt
- Und dann die Policy π verwendet um seine Aktionen in jedem Zeitschritt zu wählen

Bellman Optimalitätsgleichung

Optimaler State-Value

$$v_*(s) = \max_{\pi} v_{\pi}(s)$$

Optimaler Action-Value

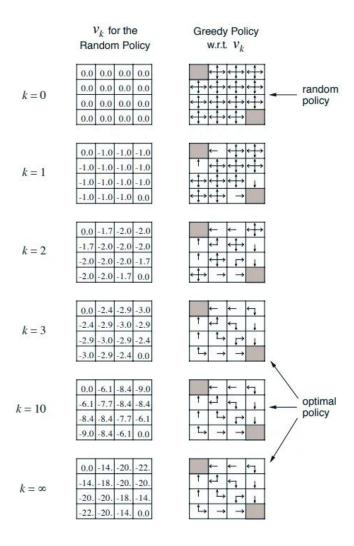
$$q_*(s,a) = \max_{\pi} q_{\pi}(s,a)$$

Bellman-Optimalitätsgleichung

$$v_*(s) = \max_{a} q_{\pi*}(s, a)$$

= $\max_{a} \sum_{s',r} p(s', r|s, a)[r + \gamma v_*(s')]$

Beispiel: Bellman-Optimalitätsgleichung



Temporal Difference Leraning

Temporal Difference (TD) Leraning

- **Stichprobenbasiert**: Lernt direkt aus gesammelten Erfahrungen (Episoden).
- **Modellfrei**: Es ist kein Wissen über MDP-Übergänge oder Belohnungsfunktionen erforderlich.
- **Bootstrapping**: Lernt aus unvollständigen Episoden, indem es bereits vorhandene Schätzwerte nutzt.
- **TD(0)-Lernregel**: Aktualisierungen erfolgen nach jedem einzelnen Schritt.
- "TD passt eine Schätzung mithilfe einer Schätzung an": Die aktuelle Wertschätzung wird mithilfe der geschätzten Werte des nächsten Zustands aktualisiert.

TD(0)-Aktualisierung

$$V(s_t) \leftarrow V(s_t) + \alpha [R + \gamma V(s_{t+1}) - V(s_t)]$$

- Neuer Wert des Zustands s_t
- Vorherige Schätzung des Werts des Zustands s_t
- Lernrate
- Reward
- Abgezinster Wert bei nächstem Zustand
- TD-Ziel: $R + \gamma V(s_{t+1})$
- Temporaldifferenz: $R + \gamma V(s_{t+1}) V(s_t)$

SARSA

```
Sarsa (on-policy TD control) for estimating Q \approx q_*

Initialize Q(s,a), \forall s \in \mathcal{S}, a \in \mathcal{A}(s), arbitrarily, and Q(terminal\text{-}state, \cdot) = 0

Repeat (for each episode):
   Initialize S
   Choose A from S using policy derived from Q (e.g., \epsilon-greedy)
   Repeat (for each step of episode):
    Take action A, observe R, S'
   Choose A' from S' using policy derived from Q (e.g., \epsilon-greedy)
   Q(S,A) \leftarrow Q(S,A) + \alpha \left[R + \gamma Q(S',A') - Q(S,A)\right]
   S \leftarrow S'; A \leftarrow A';
   until S is terminal
```

Q-Learning

```
Q-learning (off-policy TD control) for estimating \pi \approx \pi_*
Initialize Q(s,a), \forall s \in \mathcal{S}, a \in \mathcal{A}(s), arbitrarily, and Q(terminal\text{-}state, \cdot) = 0
Repeat (for each episode):
Initialize S
Repeat (for each step of episode):
Choose A from S using policy derived from Q (e.g., \epsilon-greedy)

Take action A, observe R, S'
Q(S,A) \leftarrow Q(S,A) + \alpha \left[R + \gamma \max_a Q(S',a) - Q(S,A)\right]
S \leftarrow S'
until S is terminal
```

Praktisches Tutorial

RL Tutorial

https://github.com/NeeleKemper/rl-einfuehrung/tree/main

Google Colab

https://colab.research.google.com/

Ausblick

- Deep Reinforcement Learning
 - Kombination von Neural Networks mit RL zur Lösung hochkomplexer Probleme
 - Ermöglicht das Lernen aus hochdimensionalen Daten
- Multi-Agent Reinforcement Learning
 - RL in Umgebungen mit mehreren Agenten, die miteinander kooperieren oder konkurrieren
 - Herausforderungen bei Kommunikation, Koordination und Skalierbarkeit
- Multi-Objective Reinforcement Learning
 - Optimierung mehrerer, häufig widersprüchlicher Ziele
 - Erfordert Policies zum Balancieren von Trade-Offs zwischen unterschiedlichen Kriterien
- Sicherheit und Erklärbarkeit
 - Absicherung gegen unerwünschtes Verhalten (Safety)
 - Erklärbarkeit von Entscheidungen für mehr Akzeptanz und Transparenz

• ...

Literatur

Sutton, Richard S. – Reinforcement Learning: An Introduction. A Bradford Book (2018).

https://github.com/tonberry22/Reinforcement-Learning/blob/master/Reinforcement%20Learning%20-%20An%20Introduction%20%28Sutton%20and%20Barton%20M arch%202018%29.pdf **RL Course by David Silver (2015)**

https://www.youtube.com/watch?v=2pWv7GOvuf0&list=PLzuuYNsE1EZ AXYR4FJ75jcJseBmo4KQ9-

Sonstige Empfehlungen

AlphaGo - The Movie

https://www.youtube.com/watch?v=WXuK6gekU1Y&t=3360s